Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.

نویسندگان

  • Carrie L Peterson
  • Allison L Hall
  • Steven A Kautz
  • Richard R Neptune
چکیده

Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected walking speed (i.e., limited community=0.4-0.8 m/s and community walkers = or > 0.8m/s) and a speed-matched control were generated to quantify individual muscle contributions to forward propulsion, swing initiation and power generation during the pre-swing phase (i.e., double support phase proceeding toe-off). Simulation analyses identified decreased paretic soleus and gastrocnemius contributions to forward propulsion and power generation as the primary impairment in the limited community walker compared to the control subject. The non-paretic leg did not compensate for decreased forward propulsion by paretic muscles during pre-swing in the limited community walker. Paretic muscles had the net effect to absorb energy from the paretic leg during pre-swing in the community walker suggesting that deficits in swing initiation are a primary impairment. Specifically, the paretic gastrocnemius and hip flexors (i.e., iliacus, psoas and sartorius) contributed less to swing initiation and the paretic soleus and gluteus medius absorbed more power from the paretic leg in the community walker compared to the control subject. Rehabilitation strategies aimed at diminishing these deficits have much potential to improve walking function in these hemiparetic subjects and those with similar deficits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis.

BACKGROUND Persons with post-stroke hemiparesis usually walk slowly and asymmetrically. Stroke severity and functional walking status are commonly predicted by post-stroke walking speed. The mechanisms that limit walking speed, and by extension functional walking status, need to be understood to improve post-stroke rehabilitation methods. METHODS Three-dimensional forward dynamics walking sim...

متن کامل

Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study.

Energy storage and return (ESAR) foot-ankle prostheses have been developed in an effort to improve gait performance in lower-limb amputees. However, little is known about their effectiveness in providing the body segment mechanical energetics normally provided by the ankle muscles. The objective of this theoretical study was to use muscle-actuated forward dynamics simulations of unilateral tran...

متن کامل

The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.

BACKGROUND Post-stroke subjects with hemiparesis typically utilize a reduced number of modules or co-excited muscles compared to non-impaired controls, with at least one module resembling the merging of two or more non-impaired modules. In non-impaired walking, each module has distinct contributions to important biomechanical functions, and thus different merged module combinations post-stroke ...

متن کامل

Muscle work is increased in pre-swing during hemiparetic walking.

BACKGROUND Muscle mechanical work is likely affected by gait abnormalities in hemiparetic walking during the paretic pre-swing phase (i.e., double support phase preceding paretic toe-off). Previous experimental studies suggest that muscle work may be decreased in the paretic leg, but paretic work may have been underestimated since experimental approaches based on net joint moments do not accoun...

متن کامل

Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.

Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular muscles that comprise the plantar flexor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 43 12  شماره 

صفحات  -

تاریخ انتشار 2010